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1 Modulations of prestimulus and VEP variabil-

ity are visible also in raw data

All the analyzes made in the main paper were done after the data from each
trial was preprocessed to have zero mean in the first 100 ms and no linear trends
(computed over the complete 900 ms data for each trial and recording site). If
foreperiod duration influences the mean level of the signal or the slow (linear)
drift then this preprocessing could introduce a bias in the results. To show that
this was not the case we here device two procedures through which variability
can be assessed in data not preprocessed (called ’raw data’ in the following).
To estimate the variability in the prestimulus window we can use the sample
variance computed over time instead of over trials. That is, for each trial we take
the first 20 samples and compute the sample variance of these. To the extent
that the LFPs in the prestimulus window can be approximated by a stationary
stochastic process this ’across-time’ estimate will be highly correlated with the
across-trials variance estimate we use the main paper. To assess VEP variability
in the raw data we proceeded as follows. For a given trial and recording site
we look up the largest and smallest value of the LFPs in the 50 ms window
that covers the early part of the VEP (same windows as in the main paper).
The difference between these two numbers then serves as a rough estimate of
the VEP amplitude. This gives us one VEP amplitude per trial and site and
we subsequently compute the sample variance of these amplitudes in groups of
trials sorted with respect to foreperiod duration.

1.1 Results

1.1.1 VEP variability

Of all the 17 sites where the VEP variance was deemed to decrease with respect
to foreperiod duration (i.e. all ’significant’ sites show in in Figure 1G in the
main paper) all but two (both in monkey L) had decreasing variances also
when estimated directly on the raw data. This shows that the decrease in VEP
variance reported is unlikely to reflect an artifact of the data preprocessing used.
Figure S1 exemplifies this and shows that VEP variance estimated from the raw
data shows similar modulation with respect to foreperiod duration as does VEP
variance estimates derived from the preprocessed data (i.e. the results reported
in the main text).

1.1.2 Prestimulus LFP variability

The (across-time) estimates of prestimulus variability obtained from the raw
data were very similar to the estimates computed over trials in the processed
data. Here all sites with a decreasing variance as a function of foreperiod du-
ration also showed decreasing variance when this was estimated from the raw
data. Figure S2 shows examples of this from three different recording sites.
Note that the numerical values obtained are very similar to the ones obtained
from the preprocessed data, showing that the preprocessing has minimal effect
on the variability of the prestimulus epoch.
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Figure S1: VEP variability modulation is not dependent on preprocessing of
the data. The three panels show two different estimates of VEP variability
for the three sites indicated in Figure 1F in the main text (same color code
as in that Figure). The ’raw data’ estimates were computed as indicated in
the supplementary information (this document) and the ’preprocessed data’
estimates are identical to what is shown in the main text (reproduced here
for comparison). The raw data estimates have been scaled by 1/2 to make
comparisons easier.
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Figure S2: Prestimulus variability modulation is not dependent on preprocess-
ing of the data. The three panels show two different estimates of the prestimulus
variability for the three sites indicated in Figure 1F in the main text (same color
code as in that Figure). The ’raw data’ estimates were computed as indicated
in the supplementary information (this document) and the ’preprocessed data’
estimates are identical to what is shown in the main text, Figure 2A (reproduced
here for comparison).
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2 Increased variability in the local field poten-

tial increases spiking variability

Here we investigate the possible effects of changes in the variability of the lo-
cal field potential on single neuron spiking variability. Cortical field potentials
are believed to reflect mainly local synaptic activity [Purpura, 1959, Mitzdorf,
1985]. From experiments using simultaneous intracellular and field potential
recordings it is known that the membrane potentials of single neurons are often
highly correlated with the local field (e.g. Steriade [1997], Poulet and Petersen
[2008]). It is therefore reasonable to assume that changes in the properties
of field potentials will be reflected in the membrane potentials of single cells.
Motivated by this viewpoint, we employed a biophysically derived model of a
cortical pyramidal cell from the literature [Destexhe et al., 2001]. Starting with
the same parameters as used in Destexhe et al. [2001] we studied the effects of
adding more variability to the membrane potential. Spectral analysis of prestim-
ulus LFP data indicated that the variability changes due to foreperiod duration
were mainly due to activity at low frequencies (see Figure 2 in the main text).
At most sites in the ’visual areas’ the change was restricted to frequencies below
20 Hz and the most pronounced changes occurred at frequencies below 12 Hz.
We therefore thought to determine the effects in the model neuron of spiking
regularity on the low frequency content of intracellular variability (see Fig. S3).
In particular, we used excitatory and inhibitory conductances described by an
autoregressive model of order two and used parameters to match the spectra of
the model neuron membrane potential to the spectra of the LFP data (compare
the spectras in Figure 2 in the main text with those in Figure S3C). It is im-
portant to realize that the injected noisy conductances had zero mean, and only
the amplitude of the noise term (innovation term) was changed. Consequently,
in all simulations the mean input to the cell was the same. We then studied
how the regularity of the spikes evoked by a steady injected current depended
on the variability of the conductances. To measure spiking variability we used
the sample variance of the spike count (over trials) divided by the mean of the
spike count in a time window of 100 ms (this measure is sometimes called the
Fano factor). There was indeed a strong effect on the variability on the spiking
regularity (Fig. S3D)). This can be intuitively understood in the following way.
For trials simulated with a large noise amplitude the membrane potential might
be relatively hyperpolarized for a substantial amount of time (due to the slow
fluctuations of the noise) and hence the cell fires fewer spikes than on average.
On other trials the membrane potential might be relatively depolarized and the
cell fires more spikes than on average. Thus increasing the amplitude of fluctua-
tions that are of the same timescale as the analysis window (100 ms) inevitably
increases the trial-to-trial spiking variability for certain values of the ’sensory’
input current.

5



0 500 1000

−80

−60

−40

−20

0

20

40

time (ms)

m
em

br
an

e 
po

t. 
(m

V
)

short fp

long fp

A

0 200 400
−75

−70

−65

−60

time (ms)

B

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

frequency (Hz)

am
pl

itu
de

 s
pe

ct
ra

 (
m

V
)

C

1 1.5 2
0.8

0.9

1

1.1

1.2

norm. noise amplitude

F
an

o 
fa

ct
or

D

Figure S3: Low frequency variability of the membrane potential increases re-
sponse irregularity. (A) Membrane potential of model neuron for two values of
background variability. In black are data corresponding to a short foreperiod
(high variability of the membrane potential). In gray are data corresponding
to a long foreperiod (lower variability of the membrane potential). At 500 ms
the cell is receiving an additional input consisting in a Poisson spike train with
a rate of 500 Hz. (B) Magnification of the ’prestimulus’ part of A (i.e. from
0 to 500 ms). (C) Amplitude spectra of the background state where the cell
is not spiking. Trials with a ’short foreperiod’ (i.e. with large membrane po-
tential variability) in black and those with a long foreperiod in gray. Spectras
were estimated in non-overlapping windows of 500 ms from a simulation with-
out additional stimulation (to prevent the cell from spiking). (D) Fano factor
as a function of noise intensity. In each trial the number of spikes in a 100
ms window starting at ’stimulus onset’ was used to compute the Fano factor
(variance of spike count divided by mean of spike count, computed over 1000
’trials’). Changing the window length or moving it within the ’activated’ epoch
did not change the results qualitatively.
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